The Goldreich–Goldwasser–Halevi (GGH) lattice-based cryptosystem is an asymmetric cryptosystem based on lattices. There is also a GGH signature scheme.
The Goldreich–Goldwasser–Halevi (GGH) cryptosystem makes use of the fact that the closest vector problem can be a hard problem. It was published in 1997 and uses a trapdoor one-way function that is relying on the difficulty of lattice reduction. The idea included in this trapdoor function is that, given any basis for a lattice, it is easy to generate a vector which is close to a lattice point, for example taking a lattice point and adding a small error vector. But it is not known how to simply return from this erroneous vector to the original lattice point.
Operation[]
GGH involves a private key and a public key.
The private key is a basis of a lattice with good properties, such as short nearly orthogonal vectors and a unimodular matrix .
The public key is another basis of the lattice of the form .
For some chosen M, the message space consists of the vector in the range .
Encryption[]
Given a message , error , and a public key compute
In matrix notation this is
- .
Remember consists of integer values, and is a lattice point, so v is also a lattice point. The ciphertext is then
Decryption[]
To decrypt the cyphertext one computes
The Babai rounding technique will be used to remove the term as long as it is small enough. Finally compute
to get the messagetext.
Example[]
Let be a lattice with the basis and its inverse
- and
With
- and
this gives
Let the message be and the error vector . Then the ciphertext is
To decrypt one must compute
This is rounded to and the message is recovered with
Security of the scheme[]
1999 Nguyen showed at the Crypto conference that the GGH encryption scheme has a flaw in the design of the schemes. He showed that every ciphertext reveals information about the plaintext and that the problem of decryption could be turned into a special closest vector problem much easier to solve than the general CVP.
Bibliography[]
- Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from lattice reduction problems. In CRYPTO ’97: Proceedings of the 17th Annual International Cryptology Conference on Advances in Cryptology, pages 112–131, London, UK, 1997. Springer-Verlag.
- Phong Q. Nguyen. Cryptanalysis of the Goldreich–Goldwasser–Halevi Cryptosystem from Crypto ’97. In CRYPTO ’99: Proceedings of the 19th Annual International Cryptology Conference on Advances in Cryptology, pages 288–304, London, UK, 1999. Springer-Verlag.